
A Practical Guide to

A 5-step journey to achieve continuous compliance without sacrificing speed.

Continuous Compliance
for Your Cloud Infrastructure

A Practical Guide to Continuous Compliance for
Your Cloud Infrastructure

Abstract
Continuous infrastructure automation extends the agile and DevOps practices used in
software development to infrastructure engineering. Think of it as CI/CD for
infrastructure that enables you to rapidly and safely deploy your cloud environments in a
seamless and repeatable process. Gartner predicts 70% of organizations worldwide will
implement continuous infrastructure automation to improve business agility by 2025.
This is a 5-step journey to help you get started with this initiative to achieve continuous
compliance without sacrificing speed.

1. Start with infrastructure automation by adopting Infrastructure-as-Code (IaC)
enabling developers to become more autonomous and agile.

2. Add IaC to the CI/CD pipeline so you can start treating infrastructure as software
projects for continuous integration and delivery.

3. Automate security validations in the pipeline to catch security violations and
prevent security and compliance issues before deployment.

4. Analyze IaC with the live cloud environment to detect configuration drift and
hidden issues.

5. Enforce policy to prevent security issues from making it to your environment.

https://www.gartner.com/document/4001005?ref=sendres_email&refval=77631866

The ebook team and contributors

Ryder Damen
Ulrica de Fort-Menares
Charles Kim
Yoni Leitersdorf
Carlos Mora
Oscar Quintas
Devassy Tharakan

https://www.linkedin.com/in/ryderdamen/
https://www.linkedin.com/in/ulrica-de-fort-menares/
https://www.linkedin.com/in/charles-kim/
https://www.linkedin.com/in/yonadavleitersdorf/
https://www.linkedin.com/in/carlosmoraq/
https://www.linkedin.com/in/oscarquintasfontal/
https://www.linkedin.com/in/devjos/

Abstract 1

The ebook team and contributors 2

Introduction 5
What is Product Security? 5
Infrastructure Continuous Compliance Framework 5

Chapter 1: Move From Manual Provisioning to Infrastructure Automation 7
Why Automation? 7

Increase Availability 7
Automated Documentation 7
Productivity Gain 8

Automation Challenges 8
Automation Best Practices 9
Automation Metrics 9
Automation Checklist 9

Chapter 2: Operate by Merge Requests with IaC in the CI/CD 9
Improve Efficiency 10
Increase Controls 11
Improve Quality 11
Challenges integrating with the CI/CD Pipeline 11
CI/CD Integration Best Practices 11
CI/CD Integration Success Metrics 12
CI/CD Integration Checklist 12

Chapter 3: Catch Security Issues in the Pipeline with IaC Static Analysis 13
Early Security Testing with Static Analysis 13
Challenges with Static Analysis 14

Lack of Alignment 14
Talent shortages in DevOps and Security 14
Getting buy-in 14
False Positives 14

Static Analysis Best Practices 15
Focus on visibility initially 15
Empathy and Collaboration 15
Establish shared goals 15

Static Analysis Success Metrics 15
Static Analysis Integration Checklist 16

Chapter 4: Evaluate Security Issues with IaC Dynamic Analysis 17
Hidden Security Issues 17
Infrastructure Drift 18
Challenges with Dynamic Analysis 18
Dynamic Analysis Best Practices 19
Dynamic Analysis Success Metrics 19
Dynamic Analysis Integration Checklist 20

Chapter 5: Enforce Policy to Achieve Continuous Compliance 21
Challenges with Policy Enforcement 21
Policy Enforcement Best Practices 21
Policy Enforcement Success Metrics 21
Policy Enforcement Checklist 22
Identify stakeholders who may be impacted by enforcing security policies. 22
Will the policy impact existing resources? 22

Conclusion 23
Modernizing your Infrastructure 23

Introduction
With the new digital era, every product is being transformed through the addition of a
software stack. To cope with the explosion of digitized products, organizations are
making security a priority to ensure users have a trustworthy and positive experience.
Recently, the industry has seen a surge in “product security programs” to cope with the
new challenges. Organizations are realizing product security is critical to business
sustainability and growth.

What is Product Security?
Product security is about securing the entire product environment with a focus on
designing security into the product from the beginning. Product security should be
factored into all stages of product development, including requirements, design,
development, product testing, release, and post-deployment.

Application Security is different from product security. One of the key aspects of
traditional Application Security is about securing application code through testing
throughout the software development life cycle. With Software-as-a-Service, it’s
important to consider the entire stack including cloud infrastructure, not just the release
of artifacts. Once the product is released, it’s also necessary to manage ongoing
product security operations. In some way, product security is a superset of application
security, infrastructure security, and security operations.

In this ebook, we will present a framework to help product security professionals
implement infrastructure continuous compliance in the cloud. The framework applies
the same disciplines and quality gates that are used to manage applications, to cloud
infrastructure. The goal is to ensure the cloud environment stays secure at all times
throughout the development life cycle and post-deployment. Automation, version
control, security integration testing, and deployment pipelines are all in scope.

Infrastructure Continuous Compliance Framework
This is a five-step journey to make security a priority for your cloud infrastructure
without compromising speed.

Step 1: Start with automating infrastructure deployment using Infrastructure-as-Code.
Step 2: Treat infrastructure as software projects by integrating IaC with the CI/CD
pipeline.
Step 3: Automate infrastructure security scanning before deployment with Static
Analysis as unit testing.
Step 4: Factor the cloud environment together with IaC to catch configuration drifts and
hidden issues.
Step 5: Implement policies to achieve continuous compliance.

In the following chapters, we will discuss each stage in more detail. We will explain the
rationale for each stage, discuss the challenges you will likely encounter, and share how
you can mitigate these challenges. We’ll suggest metrics to measure success for each
stage of the journey and include an actionable checklist for implementations.

Chapter 1: Move From Manual Provisioning to
Infrastructure Automation

Why Automation?
As you scale your cloud environments, keeping your infrastructure manageable can be
quite a challenge. Organizations are rapidly adopting Infrastructure as Code (IaC) for
faster and more scalable deployments. IaC is the concept of managing and provisioning
your infrastructure the same way you do for code. Instead of manually spinning up an
environment from a console, you provision your entire infrastructure with code. IaC is
more than just infrastructure automation - it applies traditional software practices to
ensure that code can be easily reused to redeploy multiple resources. Repeatable
infrastructure is easier to manage as your organization grows.

Increase Availability
Not only does infrastructure automation reduce the error rate associated with manual
provisioning of resources, it enables you to seamlessly run parallel infrastructures. One
of the challenges in deploying new software to production is minimizing downtime. The
blue-green deployment approach maintains two identical production environments,
enabling you to release new software with minimal downtime. For example, a feature
can be tested in the blue environment while the green environment is live. Once the
feature is working in the blue environment, you can safely promote the blue environment
to face live users. Infrastructure automation is the key enabler for the blue-green
deployment approach.

Automated Documentation
Automated documentation is another benefit of IaC. Automation provides a level of
documentation for IT to be able to support and extend operations. With automated
documentation, code itself will document the state of the cloud environment. For
example, in FDA (Food and Drug Administration) regulated environments, the physical
location of the server where data is stored (e.g. rack number) must be identified. With a
public cloud and Infrastructure-as-a-Service, this policy is not realistic. Instead, you can
leverage IaC as documentation to identify your existing resources. Gone are the days of
having to maintain tedious - often outdated - documentation. IaC is always an accurate
documentation of its live environment, as long as changes are not made out of the IaC
process (see drift detection further below).

Productivity Gain
Organizations that achieve the automation and self-service ideals of DevOps are able to
deploy applications faster than ever before. Imagine a developer is building a new
service that requires a new lambda function to be created in AWS. Before committing
the new code, the developer needs to test the code in a production-like environment.
Pre-IaC days, the developer typically had to get in line to submit an infrastructure change
request and wait for the change to happen. With IaC, developers can themselves make
the infrastructure change. By leveraging a Git repository that contains declarative
descriptions of infrastructure reflecting the production environment, a developer can
launch a cloned environment. They can test the new code using nearly an exact replica
of the latest production environment within a matter of minutes. This means a
developer has full control, owning all application and infrastructure stacks. Essentially,
IaC enables developers to achieve the goals for becoming more autonomous and agile.
This level of efficiency makes agile delivery a reality.

Automation Challenges
While automation adds a lot of value to the IT environment, there are some challenges
that should be considered, especially at the beginning of that journey.

1. Lack of coding skills
While you don’t need to be an expert at coding, the learning curve for IaC can be
an investment if you don’t already have experience with JSON, Hashicorp
Configuration Languages (HCL), YAML, Ruby, etc. The shortage of these skill sets
can hamper your IaC initiatives.

2. Aversion to Change
You should be prepared for objections like “We don’t make changes to
infrastructure often, so it would be easier and cheaper to manually spin up the
resources from the console.”

3. Talent retention
There is a cut-throat competition to attract the best talent in the market. For
organizations that do have an automation initiative, their first challenge is to
attract the right talent. The next challenge is to uplift the rest of the organization
who come from operations backgrounds with limited or no development
experience. How do you make automation a new culture? How do you retain the
new talent?

Automation Best Practices
1. Promote a DevOps Culture Internally

Infrastructure automation serves as a starting point for DevOps adoption,
allowing teams to release features more frequently and more reliably. By
promoting a DevOps culture, it can help attract diverse talent.

2. Management support can make this happen
The key to success is getting management support. Automation can be a huge
undertaking and the first automation tasks are going to take time. With help from
management, creating an automation culture is notably easier.

3. Acceleration through Outsourcing
Consider outsourcing Infrastructure-as-Code services for the initial
implementation. This provides you with an opportunity to familiarize yourself
with the processes and tools. The consulting professionals can train your staff.

Automation Metrics
Metrics are important tools that help you focus your teams and resources on the
automation tasks. Consider leveraging these Key Performance Indicators for your
automation initiatives.

Number of workloads migrated from manual provisioning to automated
deployment
Number of deployments per day with automation
Lead time to deploy infrastructure - measure the time it takes to provision a
server by filling out a form. Compare the time between manual process and
automated deployment

Automation Checklist
Determine the IaC language(s) that your company will adopt
Identify skill gaps
Identify training requirements
Ensure your ticketing system supports the new automation workflow
Identity and prioritize the workloads for automation

Chapter 2: Operate by Merge Requests with IaC in
the CI/CD
With infrastructure automation in place and represented as code, you can take the
software-oriented approach to infrastructure. IaC offers the opportunity to introduce
continuous integration and continuous deployment in your development process.

Continuing with the example in Chapter 1, after the new service is successfully tested in
an isolated environment, the developer is ready to commit the code with a merge/pull
request (PR). Instead of managing the infrastructure change in its own silo, it makes
sense that the updated infrastructure definition is version-controlled and stored in Git
alongside the version with the new application code. This naturally provides a detailed
audit trail for changes. Version control is also very helpful for restoring any potential
changes or diagnosing any issues.

Improve Efficiency
By integrating IaC into the CI/CD pipeline, infrastructure changes can be templatized
and tracked, along with the application source code. In an outdated process, a
developer submitted their infrastructure change request via ticketing systems with
typically vague descriptions of the request. A member of the IT team would then need to
process the ticket and send it for a revision process by a review team. Once all aspects
had been reviewed, the ticket was approved. Eventually, the infrastructure change was
applied by the operation. With a CI/CD integration, the change request is done via a Pull
Request (PR) where all changes are reflected. The vague description disappears,
replaced instead by a declarative description of infrastructure changes represented as

code. By automatically triggering infrastructure deployment upon the merge of the PR, it
also ensures only changes approved will be applied.

Increase Controls
Instead of allowing users to deploy cloud infrastructure directly from their workstations,
check your IaC into a code repository such as GitHub and leverage a CI/CD pipeline to
control deployments. In addition to keeping a centralized source of truth, it has the
added benefit of limiting the number of administrators required in your cloud account.
Using this mechanism also enables easier rollback of changes, by simply rolling back
the code changes created in the PR.

Improve Quality
With infrastructure treated like software, infrastructure changes can be tested early in
the process. Once an infrastructure change is deployed, system tests are run
automatically to ensure that the infrastructure change hasn’t broken the application or
introduced performance degradation. Adding IaC to the continuous integration workflow
enables deployment of infrastructure alongside your application software in the same
pipeline.

Managing your infrastructure just like your application code with Git and CI/CD tools can
increase the rate at which you produce quality code. This new trend is known as GitOps.
Developers can use Git and merge pull requests to manage both infrastructure
provisioning and software development.

Challenges integrating with the CI/CD Pipeline
1. CI/CD pipelines for application development are well understood. However, CI/CD

pipelines for infrastructure is a new concept.

2. How can we best avoid delays when using Pull Requests for infrastructure
changes? What test automation is necessary to identify the infrastructure
change?

3. Is a feature branches approach or a trunk-based approach the best strategy for
our organization?

https://www.gitops.tech/

CI/CD Integration Best Practices
1. DevOps Outsourcing

Improve time to market and tap into experienced DevOps talent. Without the time
or expertise to manage a complicated application infrastructure, outsourcing is a
valuable practice.

CI/CD Integration Success Metrics
Number of issued/approved/rejected PRs per workload
Mean time between PR creation and PR approval

CI/CD Integration Checklist
Identify and document the new change management process. This should include how it
works, roles, and responsibilities
Communicate the new change management process and provide new process
training where applicable

Chapter 3: Catch Security Issues in the Pipeline with
IaC Static Analysis
While the GitOps concept promises faster and more frequent deployments, the last
thing you want is to be slowed down by legacy security programs. How often has a
release at your organization been stopped because it failed the security gate towards
the end of the release process? All too often, security testing is tacked on at the end of
the delivery process. Consequently, developers spend significant time and energy
investigating these security issues, causing delays to the release. Uncovering issues
late into the cycle creates unnecessary stress and frustrates developers.

Context switching is expensive for developers who constantly do focused work.
Bothering developers with security issues that happened a few sprints ago leads to
greater lost time. Much like unit testing, providing immediate feedback, so security
issues can be addressed within the same sprint, is immensely valuable. Catching issues
late in the development cycle is expensive and painful to fix.

Early Security Testing with Static Analysis
Incorporating security testing early in the development process is a much more
effective strategy. IaC tests can be employed continuously to evaluate security impacts
of changes and quickly provide feedback to developers to avoid context switching.

Introducing static analysis for IaC to the CI/CD pipeline is a great way to strike the right
balance between governance and speed by providing guardrails for developers, thereby
keeping developers from unintentionally creating security issues in the cloud.
Developers no longer need to get in line for security reviews. Instead, IaC will be
automatically evaluated for security impacts. Security controls are integrated into the

https://www.gitops.tech/

infrastructure development lifecycle. For the first time, the security team has early
visibility to the cloud security posture throughout the development cycle.

Challenges with Static Analysis
Businesses want more features faster. There is a general perception among developers
that security often slows down a release. If security is a bottleneck, it’s a non-starter. A
core tenet of DevOps is to increase feature velocity. The goal of the security integration
is to deploy secure cloud environments at the speed of the business.

Challenges to consider:

1. Lack of Alignment
The friction between security teams and development teams is ongoing in many
organizations. Developers have extremely demanding schedules and are often
frustrated with the security gates slowing down the delivery pipeline. The security
teams are typically risk-averse and are often misrepresented as inhibitors to
innovation.

2. Talent shortages in DevOps and Security
Shortages of cybersecurity professionals have been a real problem. According to
the 2020 ISC2 Security Workforce Study, the global cybersecurity workforce
needs to grow 89% to effectively defend organizations’ critical assets. Similarly,
skill shortages are a common problem for DevOps professionals. Unfortunately,
the talent shortage is here to stay.

3. Getting buy in
Creating a security mindset to understand the importance of early security
checks and avoid delaying such security reviews requires a cultural change.

4. False Positives
Static Analysis is notorious for being noisy with many false positives. A noisy
security tool can be counterproductive if it inadvertently stops pipelines, leading
to developer frustration.

https://www.isc2.org/-/media/ISC2/Research/2020/Workforce-Study/ISC2ResearchDrivenWhitepaperFINAL.ashx?la=en&hash=2879EE167ACBA7100C330429C7EBC623BAF4E07B

Static Analysis Best Practices

1. Focus on visibility initially
When first implementing Static Analysis for your infrastructure, security scanning
should not impact the pipeline. Security violations should be for information
purposes initially. Getting visibility of the security posture should be the first goal
and this needs to be clearly communicated to all stakeholders.

2. Empathy and Collaboration
You should always put yourself in another person’s shoes. It is important to
communicate clearly with each other and set strong boundaries. The security
folks should collaborate with the development team to introduce security
controls at a pace that makes sense to them. The development team should
have a partner on the security side of the house. It is always good to reflect back
on a decision. Together, you can jointly make a decision that makes sense for
both sides. You can take corrective actions if a decision made has a negative
impact.

3. Establish shared goals
Establish shared goals between the development team and security teams. Often
the development and security teams have conflicting goals. Alignment from the
top and across the organization is often needed here.

Static Analysis Success Metrics
Number of issues potentially impacting the pipelines
Number of critical issues prevented before deployment
Rate of deployments per week has increased
How many services have been validated
Number of policies incorporated
Number of false positives
Time takes to deal with false positives (and how)
How long does it take to fix issues
Number of issues detected trend
Is the feedback from the static analysis tool quick enough?

Static Analysis Integration Checklist
Select the right tool. A few questions to ask:

Have you collected the requirements from your stakeholders?
How does the tool work with your team’s workflow?
What is the acceptable execution time for static analysis?
Open-source tools or commercial products?
Do you already have a roadmap to help you pick the right tool that meets
your long term requirements?

Determine where you would insert a scan that would be the least painful for your
team
Provide guidance to identify the criticality of the security issues.
Define your bug fix policy including expected time to fix critical security issues.
Provide guidelines to identify false positives
Establish the process to deal with false positives

Chapter 4: Evaluate Security Issues with IaC
Dynamic Analysis
While static analysis for IaC is a big leap forward for developers and the security team, it
does present some new challenges. Static analysis is notorious for generating many
false positives and can inadvertently disrupt a developer’s workflow. In the world of
application security, organizations have faced similar challenges with noise. This has
forced the evolution from SAST (Static Application Security Testing) to DAST (Dynamic
Application Security Testing) and IAST (Interactive Application Security Testing). A
similar shift is imminent in the IaC security arena.

Dynamic Analysis evaluates the IaC together with the live cloud environment in order to
predict security issues before deployment. For example, most static analysis tools will
alert if a security group is too permissive allowing any ingress traffic or a security group
permits SSH traffic from the public internet. What if that security group is not used?? Or
the group is used, but the attached machine resides in a subnet where the network
access control list (NACL) disallows port 22? Dynamic analysis analyzes the IaC along
with the live environment, and understands that the NACL blocks SSH traffic. The
security group, while ill-configured, is not a real problem to deal with at this time.
Dynamic analysis keeps noise levels down.

Hidden Security Issues
Besides being noisy, many security issues only manifest themselves through analysis
within the deployed environment. As a result, static analysis is unable to detect many
cloud security issues. Imagine you have created an RDS database, placing it in a subnet
that has internet access, but without a public IP address. In such a case, the database is
not publicly accessible.

resource "aws_db_instance" "test" {
... (usual DB parameters) ...
db_subnet_group_name = aws_db_subnet_group.db.name
vpc_security_group_ids = [aws_security_group.db.id]
publicly_accessible = false

}

Now imagine someone else, working with the same cloud account, is intending to
deploy a new EC2 instance separately on the same subnet. This EC2 instance would be
publicly accessible.

// This instance can potentially be used to hop into the DB
resource "aws_instance" "public_ins" {
ami = "ami-0130bec6e5047f596"
instance_type = "t3.nano"
associate_public_ip_address = true
vpc_security_group_ids = [aws_security_group.publicly_accessible_sg.id]
subnet_id = "subnet-samesubnetasdbwascreatedonabove"

}

Each Terraform code is not necessarily a cloud security concern by themselves.
However, the user creating the RDS database can potentially have their database
exposed to outside access by the other deployment. The owner of the EC2 instance
Terraform file inadvertently introduced a new cloud security concern to the RDS
instance, and the EC2 owner had no idea. Worse yet, the owner could have been a third
party.

This is another reason for dynamic analysis. The only way to catch this type of hidden
issue is to concurrently evaluate the proposed plan with the live cloud environment.
Otherwise, it is very easy to overlook potentially serious security concerns.

Infrastructure Drift Detection
Another reason for dynamic analysis is cloud infrastructure drift. Infrastructure drift is
change that occurs in a cloud environment that differs from the originally deployed
method. For example, if you provision a resource using Terraform, and you then make a
change using the web console, that is considered a drift. Without a tightly controlled
change management process, drift can be a source of security issues resulting in
potential blind spots. Imagine you are in the middle of an audit. Your policy is to use IaC
as the single source of truth. When an auditor asks you how you manage your IAM, you
proudly present your Terraform code without realizing a drift has occurred, causing
non-compliance. No doubt that one of the biggest challenges in an IaC managed
infrastructure is to spot discrepancies as they happen. To effectively operationalize your
cloud environment with IaC, it’s necessary to ensure the IaC in the Git repository is the
“single source of truth”.

Challenges with Dynamic Analysis
1. Configuration Drift

Any changes performed outside of the approved IaC change management
process have great impacts, either in daily operations or in security. Sometimes
changes are inevitable, but it’s important to be aware of them.

2. Security Concerns
The need to scan a production environment with customer information can pose
security concerns when it comes to access to sensitive data.

3. Time it takes to scan may be an issue for very large deployments.

Dynamic Analysis Best Practices
1. Follow the principle of least privilege when assigning permissions to tools that

require access to a live environment.

2. Drift detection
When handling drift detection, a manual approach may be acceptable initially. In
this case, the event is manually reported via a ticketing system. An IaC engineer
then must update the corresponding IaC templates to reflect the drift. The best
approach is to automate the process, detecting drifts, and evaluating security
violations automatically.

3. Apply techniques to obfuscate sensitive data.

Dynamic Analysis Success Metrics
Number of critical issues prevented before deployment
Deployment trend - Is the # of deployments growing
How many services have been validated
Number of policies incorporated
How to fix detected security issues
How long does it take to fix issues
Number of issues detected trend
Number of drifts
Mean time to detect in live environment
Number of false positives

Time takes to deal with false positives
Time it takes to complete the dynamic analysis

Dynamic Analysis Integration Checklist
Tool selection
Verify the permissions
Identify how quickly you want to determine configuration drifts?
Tools to identify configuration drifts

Chapter 5: Enforce Policy to Achieve Continuous
Compliance
By embracing IaC, collaborating through merge/pull requests, and implementing CI/CD,
you are effectively in a position to deliver a faster and more predictable product. By
introducing security evaluations with static analysis early on, you gain visibility into your
cloud posture throughout the development lifecycle. With dynamic analysis, you
operationalize your IaC managed infrastructure. You’ve essentially taken a ‘security by
design’ approach to managing your cloud. With this, you are now in a position to enforce
policy as code as part of DevOps workflows. This means stopping the pipeline and
alerting stakeholders when a security issue important to your organization is detected.
This way, you can prevent security issues from ever making it into your production
environment and reduce the possibility of security breaches.

Challenges with Policy Enforcement
1. How to ensure the right guardrails are in place?
2. How to make sure you are enabling the necessary security controls and not too

many?
3. How to ensure policy enforcement does not slow down development too much?

Policy Enforcement Best Practices
1. Collaborate with stakeholders to identify security policies you want to enforce.
2. Resolve security issues before enforcing security policies to minimize impact to

the pipeline.
3. Only apply enforcement to new resources and not existing resources. This means

that existing resources with certain violations will not be impacted and can be
resolved separately, to avoid slowing down adoption of policy enforcement.

Policy Enforcement Success Metrics
Number of policies enforced
Number of times the pipeline was stopped & trend
Deployments trend is growing
How many services have been validated
How long does it take to address security issues

Policy Enforcement Checklist

Identify stakeholders who may be impacted by the new policy enforcement
process
Acceptance from stakeholders
How will the new policy enforcement impact existing resources?
Communicate the new security policies

Conclusion

Modernizing your Infrastructure
As you transition to cloud-native development and cloud modernization efforts, you
have the opportunity to implement security by design without sacrificing speed. We
hope you find this roadmap useful in guiding your organization’s digital transformation.
This security-centric journey is a new paradigm that is moving toward a preventive cloud
security strategy. By incorporating security early in the development lifecycle, you can
now take appropriate preventive steps to remediate misconfigurations and security
risks before deployment, while achieving continuous compliance.

